Standard

Available (1835)

Showing 277 - 288 per page



Geographic information - Quality assurance of data supply

ISO/TS 19158:2012 provides a framework for quality assurance specific to geographic information. It is based upon the quality principles and quality evaluation procedures of geographic information identified in ISO 19157 and the general quality management principles defined in ISO 9000. The framework defined in ISO/TS 19158:2012 enables a customer to satisfy itself that its suppliers, both internal and external, are capable of delivering geographic information to the required quality. Fundamental to the framework is the assurance of the supplier's ability to understand and meet the quality requirements. Through the quality assurance framework both the customer and the supplier are able to consider the quality required at the earliest opportunity in the production/update process. Principles and responsibilities of the relationship between the customer and the supplier that facilitate the framework are provided. The responsibility for the quality assessment procedure is shared between the customer and the supplier. ISO/TS 19158:2012 is applicable to customers and suppliers of all geographic information where the quality of the product may be impacted upon by the supplier's processes in any of the following scenarios:1) there is an agreement or legislation for the supply of data acquisition services,2) data acquisition services are being tendered for, and3) one or more suppliers exist in the supply chain.ISO/TS 19158:2012 is not applicable for the supply of legacy datasets or ?off the shelf' products where there is no further data production or update activity to manage.

ISO/TS 19158:2012

Geographic information - Ontology - Part 1: Framework

This document is the first of a family of standards. ISO/TS 19150-1:2012 defines the framework for semantic interoperability of geographic information. This framework defines a high level model of the components required to handle semantics in the ISO geographic information standards with the use of ontologies.

ISO/TS 19150-1:2012

Geographic information - XML schema implementation - Part 1: Encoding rules

This document is the first of a family of standards. This document defines XML based encoding rules for conceptual schemas specifying types that describe geographic resources. The encoding rules support the UML profile as used in the UML models commonly used in the standards developed by ISO/TC 211. The encoding rules use XML schema for the output data structure schema. The encoding rules described in this document are not applicable for encoding UML application schema for geographic features (see ISO 19136 for those rules).

ISO/TS 19139-1:2019

Geographic information - Imagery, gridded and coverage data framework

ISO/TS 19129:2009 defines the framework for imagery, gridded and coverage data. This framework defines a content model for the content type imagery and for other specific content types that can be represented as coverage data. These content models are represented as a set of generic UML patterns for application schemas.

ISO/TS 19129:2009

Geographic information - Imagery sensor models for geopositioning - Part 1: Fundamentals

This document is the first of a family of standards. This document identifies the information required to determine the relationship between the position of a remotely sensed pixel in image coordinates and its geoposition. It supports exploitation of remotely sensed images. It defines the metadata to be distributed with the image to enable user determination of geographic position from the observations. This document specifies several ways in which information in support of geopositioning can be provided.a) It may be provided as a sensor description with the associated physical and geometric information necessary to rigorously construct a PSM. For the case where precise geoposition information is needed, this document identifies the mathematical equations for rigorously constructing PSMs that relate 2D image space to 3D ground space and the calculation of the associated propagated errors. This document provides detailed information for three types of passive electro-optical/ IR sensors (frame, pushbroom and whiskbroom) and for an active microwave sensing system SAR. It provides a framework by which these sensor models can be extended to other sensor types.b) It can be provided as a TRM, using functions whose coefficients are based on a PSM so that they provide information for precise geopositioning, including the calculation of errors, as precisely as the PSM they replace.c) It can be provided as a CM that provides a functional fitting based on observed relationships between the geopositions of a set of GCPs and their image coordinates.d) It can be provided as a set of GCPs that can be used to develop a CM or to refine a PSM or TRM.This document does not specify either how users derive geoposition data or the format or content of the data the users generate.

ISO 19130-1:2018

Application of ubiquitous public access to-geographic information to an air quality information service

This document facilitates an understanding of the Ubiquitous Public Access (UPA) context information model, as defined in ISO 19154, to establish a UPA-to-Geographic Information (GI) environment. In addition, this document illustrates how the UPA context information model is designed and implemented to provide an air quality information service from a geographic information system (GIS)-based air quality information system. The UPA context information model for air quality information is only a sample of all possible examples to realize the UPA-to-GI that could satisfy the requirements of ISO 19154.

ISO/TR 19167:2019

Geographic information - Imagery and gridded data

This Technical Report reviews the manner in which raster and gridded data is currently being handled in the Geomatics community in order to propose how this type of data should be supported by geographic information standards. This Technical Report identifies those aspects of imagery and gridded data that have been standardized or are being standardized in other ISO committees and external standards organizations, and that influence or support the establishment of raster and gridded data standards for geographic information. It also describes the components of those identified ISO and external imagery and gridded data standards that can be harmonized with the ISO 19100 series of geographic information/geomatics standards. A plan is presented for ISO/TC 211 to address imagery and gridded data in an integrated manner, within the ISO 19100 series of geographic information standards.

ISO/TR 19121:2000

Standard representation of geographic point location by coordinates

This document specifies the representation of latitude and longitude and optionally height or depth compatible with previous editions of ISO 6709. This document also supports the representations of other coordinate types and time that can be associated with those coordinates as defined through one or more coordinate reference systems (CRS). This document describes a text string of coordinates, suitable for electronic data exchange, for one point, including reference system identification to ensure that the coordinates unambiguously represent the position of that point. Files containing multiple points with a single common reference system identification are out of scope. This document also describes a simpler text string structure for coordinate representation of a point location that is more suitable for human readability.

ISO 6709:2022

Geographic information - Discrete Global Grid Systems Specifications - Part 1: Core Reference System and Operations, and Equal Area Earth Reference System

This document is the first of a family of standards. This document supports the definition of:(1) Discrete Global Grid Systems (DGGS) core comprising: an RS using zonal identifiers with structured geometry, and functions providing import, export and topological query,(2) Common spatio-temporal classes for geometry, topology, RS using zonal identifiers, zonal identifiers and zones, based on ISO 19111 CRS. The spatio-temporal scope is constrained to: spatial elements that are invariant through all time, and temporal elements that are invariant across all space.(3) Equal-Area Earth Reference Systems (EAERSs) for Equal-Area Earth DGGS.

ISO 19170-1:2021

Geographic information - Geospatial API for features - Part 1: Core

This document is the first of a family of standards. This document specifies the behaviour of Web APIs that provide access to features in a dataset in a manner independent of the underlying data store. This document defines discovery and query operations. Discovery operations enable clients to interrogate the API, including the API definition and metadata about the feature collections provided by the API, to determine the capabilities of the API and retrieve information about available distributions of the dataset. Query operations enable clients to retrieve features from the underlying data store based upon simple selection criteria, defined by the client.

ISO 19168-1:2020

Geographic information - Preservation of digital data and metadata - Part 1: Fundamentals

This document is the first of a family of standards. ISO 19165-1:2018 defines a preservation metadata extension of ISO 19115‑1. ISO 19165-1:2018 defines the requirements for the long-term preservation of digital geospatial data. These data also include metadata, representation information, provenance, context and any other content items that capture the knowledge that are necessary to fully understand and reuse the archived data. This document also refers to characteristics of data formats that are useful for the purpose of archiving. Geospatial data are preserved as a geospatial information package (IP). This document defines the requirements of the geospatial archival IP and details of the geospatial submission and the dissemination IPs. A geospatial archival IP is fully self-describing and allows a future reconstruction of the dataset without external documentation. The functional requirements for a preservation archive are defined in Annex D. ISO 19165-1:2018 complements standards developed by ISO/TC 211 as well as other ISO standards such as ISO 14721.

ISO 19165-1:2018

Geographic information - Well-known text representation of coordinate reference systems

This document defines the structure and content of a text string implementation of the abstract model for coordinate reference systems described in ISO 19111. The string defines frequently needed types of coordinate reference systems and coordinate operations in a self-contained form that is easily readable by machines and by humans. The essence is its simplicity; as a consequence there are some constraints upon the more open content allowed in ISO 19111. To retain simplicity in the well-known text (WKT) description of coordinate reference systems and coordinate operations, the scope of this document excludes parameter grouping and pass-through coordinate operations. The text string provides a means for humans and machines to correctly and unambiguously interpret and utilise a coordinate reference system definition with look-ups or cross references only to define coordinate operation mathematics. A WKT string is not suitable for the storage of definitions of coordinate reference systems or coordinate operations because it omits metadata about the source of the data and may omit metadata about the applicability of the information.

ISO 19162:2019