The OASIS KMIP TC works to define a single, comprehensive protocol for communication between encryption systems and a broad range of new and legacy enterprise applications, including email, databases, and storage devices. By removing redundant, incompatible key management processes, KMIP will provide better data security while at the same time reducing expenditures on multiple products.
The OASIS KMIP TC works to define a single, comprehensive protocol for communication between encryption systems and a broad range of new and legacy enterprise applications, including email, databases, and storage devices. By removing redundant, incompatible key management processes, KMIP will provide better data security while at the same time reducing expenditures on multiple products.
The OASIS KMIP TC works to define a single, comprehensive protocol for communication between encryption systems and a broad range of new and legacy enterprise applications, including email, databases, and storage devices. By removing redundant, incompatible key management processes, KMIP will provide better data security while at the same time reducing expenditures on multiple products.
The OASIS KMIP TC works to define a single, comprehensive protocol for communication between encryption systems and a broad range of new and legacy enterprise applications, including email, databases, and storage devices. By removing redundant, incompatible key management processes, KMIP will provide better data security while at the same time reducing expenditures on multiple products.
The OASIS KMIP TC works to define a single, comprehensive protocol for communication between encryption systems and a broad range of new and legacy enterprise applications, including email, databases, and storage devices. By removing redundant, incompatible key management processes, KMIP will provide better data security while at the same time reducing expenditures on multiple products.
The Security Assertion Markup Language (SAML), developed by the Security Services Technical Committee of OASIS, is an XML-based framework for communicating user authentication, entitlement, and attribute information. As its name suggests, SAML allows business entities to make assertions regarding the identity, attributes, and entitlements of a subject (an entity that is often a human user) to other entities, such as a partner company or another enterprise application.
The OASIS MQTT TC is producing a standard for the Message Queuing Telemetry Transport Protocol compatible with MQTT V3.1, together with requirements for enhancements, documented usage examples, best practices, and guidance for use of MQTT topics with commonly available registry and discovery mechanisms. The standard supports bi-directional messaging to uniformly handle both signals and commands, deterministic message delivery, basic QoS levels, always/sometimes-connected scenarios, loose coupling, and scalability to support large numbers of devices. Candidates for enhancements include message priority and expiry, message payload typing, request/reply, and subscription expiry.
This publication provides a catalog of security and privacy controls for federal information systems and organizations and a process for selecting controls to protect organizational operations (including mission, functions, image, and reputation), organizational assets, individuals, other organizations, and the Nation from a diverse set of threats including hostile cyber attacks, natural disasters, structural failures, and human errors. The controls are customizable and implemented as part of an organization-wide process that manages information security and privacy risk. The controls address a diverse set of security and privacy requirements across the federal government and critical infrastructure, derived from legislation, Executive Orders, policies, directives, regulations, standards, and/or mission/business needs. The publication also describes how to develop specialized sets of controls, or overlays, tailored for specific types of missions/business functions, technologies, or environments of operation. Finally, the catalog of security controls addresses security from both a functionality perspective (the strength of security functions and mechanisms provided) and an assurance perspective (the measures of confidence in the implemented security capability). Addressing both security functionality and security assurance ensures that information technology products and the information systems built from those products using sound systems and security engineering principles are sufficiently trustworthy.
The purpose of this document is to define a NIST Cloud Computing Security Reference Architecture (NCC-SRA)--a framework that: i) identifies a core set of Security Components that can be implemented in a Cloud Ecosystem to secure the environment, the operations, and the data migrated to the cloud; ii) provides, for each Cloud Actor, the core set of Security Components that fall under their responsibilities depending on the deployment and service models; iii) defines a security-centric formal architectural model that adds a security layer to the current NIST SP 500-292, "NIST Cloud Computing Reference Architecture"; and iv) provides several approaches for analyzing the collected and aggregated data.
The OASIS Trust Elevation TC works to define a set of standardized protocols that service providers may use to elevate the trust in an electronic identity credential presented to them for authentication. The Trust Elevation TC is intended to respond to suggestions from the public sector, including the U.S. National Strategy for Trusted Identities in Cyberspace (NSTIC). The Trust Elevation TC promotes interoperability among multiple identity providers--and among multiple identity federations and frameworks--by facilitating clear communication about common and comparable operations to present, evaluate and apply identity [data/assertions] to sets of declared authorization levels.
Big Data is a term used to describe the large amount of data in the networked, digitized, sensor-laden, information-driven world. While opportunities exist with Big Data, the data can overwhelm traditional technical approaches and the growth of data is outpacing scientific and technological advances in data analytics. To advance progress in Big Data, the NIST Big Data Public Working Group (NBD-PWG) is working to develop consensus on important, fundamental concepts related to Big Data. The results are reported in the NIST Big Data Interoperability Framework series of volumes. This volume, Volume 5, presents the results of the reference architecture survey. The reviewed reference architectures are described in detail, followed by a summary of the reference architecture comparison.
Big Data is a term used to describe the large amount of data in the networked, digitized, sensor-laden, information-driven world. While opportunities exist with Big Data, the data can overwhelm traditional technical approaches and the growth of data is outpacing scientific and technological advances in data analytics. To advance progress in Big Data, the NIST Big Data Public Working Group (NBD-PWG) is working to develop consensus on important, fundamental concepts related to Big Data. The results are reported in the NIST Big Data Interoperability Framework (NBDIF) series of volumes. This volume, Volume 4, contains an exploration of security and privacy topics with respect to Big Data. The volume considers new aspects of security and privacy with respect to Big Data, reviews security and privacy use cases, proposes security and privacy taxonomies, presents details of the Security and Privacy Fabric of the NIST Big Data Reference Architecture (NBDRA), and begins mapping the security and privacy use cases to the NBDRA.