NIST

Available (31)

Showing 25 - 31 per page



NIST Big Data Interoperability Framework: Volume 9, Adoption and Modernization

The potential for organizations to capture value from Big Data improves every day as the pace of the Big Data revolution continues to increase, but the level of value captured by companies deploying Big Data initiatives has not been equivalent across all industries. Most companies are struggling to capture a small fraction of the available potential in Big Data initiatives. The healthcare and manufacturing industries, for example, have so far been less successful at taking advantage of data and analytics than other industries such as logistics and retail. Effective capture of value will likely require organizational investment in change management strategies that support transformation of the culture, and redesign of legacy processes. In some cases, the less-than-satisfying impacts of Big Data projects are not for lack of significant financial investments in new technology. It is common to find reports pointing to a shortage of technical talent as one of the largest barriers to undertaking projects, and this issue is expected to persist into the future. This volume explores the adoption of Big Data systems and barriers to adoption; factors in maturity of Big Data projects, organizations implementing those projects, and the Big Data technology market; considerations for implementation and modernization of Big Data systems; and, Big Data readiness.

NIST Big Data Interoperability Framework: Volume 7, Big Data Standards Roadmap [Version 2]

Big Data is a term used to describe the large amount of data in the networked, digitized, sensor- laden, information-driven world. While opportunities exist with Big Data, the data can overwhelm traditional technical approaches and the growth of data is outpacing scientific and technological advances in data analytics. To advance progress in Big Data, the NIST Big Data Public Working Group (NBD-PWG) is working to develop consensus on important, fundamental concepts related to Big Data. The results are reported in the NIST Big Data Interoperability Framework (NBDIF) series of volumes. This volume, Volume 7, contains summaries of the work presented in the other six volumes, an investigation of standards related to Big Data, and an inspection of gaps in those standards.

NIST Big Data Interoperability Framework: Volume 6, Big Data Reference Architecture

Big Data is a term used to describe the large amount of data in the networked, digitized, sensor-laden, information-driven world. While opportunities exist with Big Data, the data can overwhelm traditional technical approaches and the growth of data is outpacing scientific and technological advances in data analytics. To advance progress in Big Data, the NIST Big Data Public Working Group (NBD-PWG) is working to develop consensus on important, fundamental concepts related to Big Data. The results are reported in the NIST Big Data Interoperability Framework series of volumes. This volume, Volume 6, summarizes the work performed by the NBD-PWG to characterize Big Data from an architecture perspective, presents the NIST Big Data Reference Architecture (NBDRA) conceptual model, and discusses the components and fabrics of the NBDRA.

NIST Big Data Interoperability Framework: Volume 8, Reference Architecture Interfaces

This document summarizes interfaces that are instrumental for the interaction with Clouds, Containers, and High Performance Computing (HPC) systems to manage virtual clusters to support the NIST Big Data Reference Architecture (NBDRA). The REpresentational State Transfer (REST) paradigm is used to define these interfaces, allowing easy integration and adoption by a wide variety of frameworks. Big Data is a term used to describe extensive datasets, primarily in the characteristics of volume, variety, velocity, and/or variability. While opportunities exist with Big Data, the data characteristics can overwhelm traditional technical approaches, and the growth of data is outpacing scientific and technological advances in data analytics. To advance progress in Big Data, the NIST Big Data Public Working Group (NBD-PWG) is working to develop consensus on important fundamental concepts related to Big Data. The results are reported in the NIST Big Data Interoperability Framework (NBDIF) series of volumes. This volume, Volume 8, uses the work performed by the NBD-PWG to identify objects instrumental for the NIST Big Data Reference Architecture (NBDRA) which is introduced in the NBDIF: Volume 6, Reference Architecture.

NIST Big Data Interoperability Framework: Volume 5, Architectures White Paper Survey

Big Data is a term used to describe the large amount of data in the networked, digitized, sensor-laden, information-driven world. While opportunities exist with Big Data, the data can overwhelm traditional technical approaches and the growth of data is outpacing scientific and technological advances in data analytics. To advance progress in Big Data, the NIST Big Data Public Working Group (NBD-PWG) is working to develop consensus on important, fundamental concepts related to Big Data. The results are reported in the NIST Big Data Interoperability Framework series of volumes. This volume, Volume 5, presents the results of the reference architecture survey. The reviewed reference architectures are described in detail, followed by a summary of the reference architecture comparison.

NIST Big Data Interoperability Framework: Volume 4, Security and Privacy Version 3

Big Data is a term used to describe the large amount of data in the networked, digitized, sensor-laden, information-driven world. While opportunities exist with Big Data, the data can overwhelm traditional technical approaches and the growth of data is outpacing scientific and technological advances in data analytics. To advance progress in Big Data, the NIST Big Data Public Working Group (NBD-PWG) is working to develop consensus on important, fundamental concepts related to Big Data. The results are reported in the NIST Big Data Interoperability Framework (NBDIF) series of volumes. This volume, Volume 4, contains an exploration of security and privacy topics with respect to Big Data. The volume considers new aspects of security and privacy with respect to Big Data, reviews security and privacy use cases, proposes security and privacy taxonomies, presents details of the Security and Privacy Fabric of the NIST Big Data Reference Architecture (NBDRA), and begins mapping the security and privacy use cases to the NBDRA.

NIST Cloud Computing Standards Roadmap Working Group

Cloud computing is a model for enabling convenient, on-demand network access to a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud model promotes availability and is composed of five essential characteristics (On-demand self-service, Broad network access, Resource pooling, Rapid elasticity, Measured Service); three service models (Cloud Software as a Service (SaaS), Cloud Platform as a Service (PaaS), Cloud Infrastructure as a Service (IaaS)); and, four deployment models (Private cloud, Community cloud, Public cloud, Hybrid cloud). Key enabling technologies include: (1) fast wide-area networks, (2) powerful, inexpensive server computers, and (3) high-performance virtualization for commodity hardware.
 
The Cloud Computing model offers the promise of massive cost savings combined with increased IT agility. It is considered critical that government and industry begin adoption of this technology in response to difficult economic constraints. However, cloud computing technology challenges many traditional approaches to datacenter and enterprise application design and management. Cloud computing is currently being used; however, security, interoperability, and portability are cited as major barriers to broader adoption.
 
The long term goal is to provide thought leadership and guidance around the cloud computing paradigm to catalyze its use within industry and government. NIST aims to shorten the adoption cycle, which will enable near-term cost savings and increased ability to quickly create and deploy enterprise applications. NIST aims to foster cloud computing systems and practices that support interoperability, portability, and security requirements that are appropriate and achievable for important usage scenarios.